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Abstract—In taking traditional multiple-choice tests, random guessing is unavoidable yet nonnegligible. To 

uncover the “unfairness” caused by random guessing, this paper designed a Microsoft Excel template with the 

use of relevant functions to automatically quantify the probability of answering correctly at random, 

eventually figuring out the least scores a testee should get to pass a traditional multiple-choice test with 

different probabilities of answering correctly at random and the “luckiness” for passing it. This paper 

concludes that, although random guessing is nonnegligible, it is unnecessary to remove traditional multiple-

choice items from all testing activities, because it can be controlled through changing the passing score and the 

number of options or reducing its percentage in a test.   

 

Index Terms—quantification, random guessing, multiple-choice questions 

 

I.  INTRODUCTION 

Multiple choice (MC) is a form of an objective assessment in which respondents are asked to select only correct 
answers out of the choices from a list. A traditional multiple-choice test (MCT) consists of a collection of questions or 

incomplete statements, often referred to as stems, each having a number of associated options. A stem together with its 

options is often referred to as an item. One of the options within each item is the right answer while the others are all 

wrong answers, often referred to as distractors (Bush, 2015). Since the early 1900s, traditional MC item formats have 

achieved a position of dominance in learning assessment (Swartz, 2006) and multiple-choice tests (MCTs) have been 

widely used to replace or supplement constructed responses (problems, essays or oral questions), notably due to the 

pressures of growing students’ numbers, budget constraints and the subjectivity of constructed forms of assessment 

(Becker & Johnston, 1999). Moreover, the wide use of information technology and convenient accessibility of computer 

networks have greatly helped the development of online MCTs, which allow for more flexibility in delivery as students 

take their tests at a time and place convenient to them (Krieg & Uyar, 2001; Nicol, 2007). Because of these advantages, 

traditional MCTs have played, and will continue to play, an indispensable role in educational assessment. 

Unfortunately, traditional MCTs came under fire years ago. CQUniversity Australia decided to ban multiple-choice 
questions (MCQs). According to the Academic Board resolution (24 March 2014), no multiple-choice questions can be 

used in any exams after Term 2, 2014. Actually, the criticisms of traditional MCTs have never stopped, but this decision 

indicated that the disadvantages associated with MCTs seemed to be intolerable. 

As we know, the most serious disadvantage of traditional MCTs is the limited types of knowledge that can be 

assessed. MCTs may only measure and foster students’ ability to memorise or recall factual information rather than test 

higher levels of cognitive processes (Becker & Johnston, 1999).  MCTs also fail to test students’ ability to develop an 

argument – a skill actively encouraged in higher education (Paxton, 2005). However, one nonnegligible, yet easy to be 

neglected or forgotten, concern raised by critics of traditional MCTs is that test-takers can guess their way towards a 

substantial percentage of their grade (Dawson, 2014). Early in 1922, Hahn pointed out that one of the dangers in tests 

requiring alternative responses was the guessing factor. Students regard MC examinations favourably because: (1) they 

are perceived as objective, (2) marks can be improved through making correct guesses, and (3) it is possible for students 
to gain marks on MC tests even if they do not reach the end of the paper in the allotted time (Simkin & Kuechler, 2005).  

Although it is often assumed that the effects of guessing are negligible and even some scholars have described the 

threat of guessing as “overrated” (Haladyna, 2004, p.113), the actual fact is that there is always a chance that examinees 

will answer items correctly by guessing when an exam includes MC items (Foley, 2016). Additionally, it should be 

noted that (1) guessing in taking traditional MCTs is random in most cases, having almost nothing to do with the 

knowledge being tested; (2) guessing in taking traditional MCTs is somewhat encouraged because there is no penalty 

for answering incorrectly; and (3) random guessing (RG) has become an effective strategy for some “lucky” examinees 

to “unfairly” pass some decisive examinations.  

ISSN 1799-2591
Theory and Practice in Language Studies, Vol. 8, No. 9, pp. 1152-1159, September 2018
DOI: http://dx.doi.org/10.17507/tpls.0809.07

© 2018 ACADEMY PUBLICATION



It is unnecessary to doubt the existence of RG in taking traditional MCTs. What is important is to figure out in what 

way and to what extent RG plays its role in taking traditional MCTs. In some sense, RG discussed here simply refers to 

the randomness of answering correctly (RAC), which is to be studied intensively in this paper through an automatic 

quantification designed with the help of Microsoft Excel.  

II.  AUTOMATIC QUANTIFICATION 

A.  Definition of Traditional MCTs 

A MCT may have different numbers of options: 2, 3, 4, or 5. A MCT is regarded as a true-false (T/F) test when the 

number of options is 2. In testing practice, 3-option, 4-option and 5-option are often applied for a MCT, but the most 

widely-used is 4-option, so a traditional MCT usually refers to a 4-option multiple-choice test with only one correct 

answer in each item. In taking traditional MCTs, testees get points for answering correctly, but no penalty for answering 

wrongly. 

B.  Problems to Be Solved 

The automatic quantification in this paper is designed to solve two problems: (1) how to quantify RAC probability 

(hereafter denoted as “G”) in taking a traditional MCT; (2) how to quantify the “luckiness” for passing the test 

(hereafter denoted as “L”).  

C.  Pre-research 

It is not difficult to understand that, in taking traditional MCTs, the theoretical probability of RAC is 0.25 because 

each item has four options, with only one being the correct answer. The probability of RAC has been studied and 

interpreted by some mathematical statistics. For example, 
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if k is the number of options in (1), the probability of guessing correctly exactly m of the n items is given by the 

binomial (Budescu & Bar-Hillel, 1993). 

Foley (2016) introduced a FERG (full-exam random guessing) strategy to pass traditional MCTs through illustrating 

the probability of achieving different scores using a FERG strategy, as shown in Fig. 1. In a 100-item exam consisting 

of 4-option MC items, an examinee likely would obtain “25” (a 0.25 chance of guessing each question correctly 

multiplied by 100 items) by using FERG on this exam. However, 25 is only the average score one would obtain across 

many repeated FERG attempts. Approximately half of the time examinees would score higher than 25, and about 15% 
of the time examinees would score 30 or higher. Theoretically, there is a miniscule, but non-zero, chance that the 

examinee could score 100% correct. 
 

 
Figure 1.   The probability of achieving different scores using a FERG strategy on a 100-item, 4-option MC exam. 

 

Out of curiosity, we designed a game and often played it in the classroom to manually collect the data for the purpose 

of illustrating G in a traditional MCT. The game used to be played in the following way. 

First, students were asked to write down at random any 20 answers for a 4-option and 20-item traditional MCT which 

had no questions, only to guarantee pure randomness. Students were not allowed to select only A, B, C or D as their 
answers and the 20 answers were suggested to be listed five by five for their convenience in marking. Normally, this 

was done within ONE minute. For example, Student A wrote as “ABCDD  CBACD  BABCD  AABDC”. 
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Then, I picked out at random any one of the students, say Student A, to copy on the blackboard his or her 20 answers 

which were going to serve as the keys of the virtual no-question test and, according to these keys, other students were 

required to mark their own answers and write down the number of correct answers. For example, Student B wrote as 

“BBCAD  CAACD  DBBCA  ACDDC”, earning up to 12 points. 

After that, all students were encouraged to voluntarily announce their numbers of correct answers, so the whole class 

knew on the spot who was the “luckiest” person to achieve the highest score and who was the “least lucky” person to 

get the lowest one. To be “fair”, another student, say Student C, was picked out at random to copy his or her 20 answers 

as the keys and, according to the new keys, other students were asked to mark again their own answers and write down 

the new number of correct answers. This time, the “luckiest” and the least “lucky” persons would most probably change. 

For example, Student B earned only 5 points according to Student C’s answers “ABDDC CABBA DCCBC ABCCD”. 

Last, we collected all the answer sheets, input the data, and conducted some statistics by means of Microsoft Excel to 
figure out the average value of G in the played games. Here is a sample of data statistics from five games played by 58 

students. 
 

TABLE I. 

THE AVERAGE VALUE OF G FOR A 4-OPTION AND 20-ITEM TRADITIONAL MCT IN FIVE GAMES PLAYED BY 58 STUDENTS 

Order 1 2 3 4 5 Average Percentage 

The highest score 11 8 10 13 10 10 50% 

The lowest score 1 1 2 1 1 1 5% 

The number of students who get 10  to 20 correct answers 3 0 2 4 3 2 3.44% 

The number of students who get 5 to 10 correct answers 17 12 11 24 15 16 27.58% 

The number of students who get 0 to 5 correct answers 38 46 45 30 40 40 68.97% 

The average probability of RAC 4.14 3.92 4.06 4.15 5.58 4.37 21.85% 

 

We played the game many times in the classroom and collected plenty of data. It can be seen from Table I that the 
data of the same category were quite close between any two games in spite of some minor fluctuations and that the 

average value of G (represented by 4.37 and 21.85%) was expectedly close to the theoretical one (represented by 5 and 

25%). 

The data collected from the games were authentic, but it was not an easy thing to let the students know all the results 

as quickly as they expected because all the numbers of the collected data had to be manually input one by one. For this 

reason, we designed a Microsoft Excel template with the use of relevant functions to automatically quantify G in taking 

a traditional MCT, and eventually, to quantify L through figuring out the least RAC scores (hereafter denoted as “M”) 

for passing a traditional MCT with various G values and the “lucky” RAC scores (hereafter denoted as “N”) for passing 

the test. 

D.  Template Design 

In this paper, a Microsoft Excel template was designed to automatically quantify the RAC of 1000 testees in taking a 

4-option and 20-item traditional MCT. Interestingly, the testees and the test are not authentic but virtual. This template 

is a one-sheet file with three mutually-related areas that work together through Microsoft Excel functions, such as 

“CHOOSE”, “RANDBETWEEN”, “SUMPRODUCT”, “COUNTIF”, “MAX”, “MIN”, “SUM” and “AVERAGE”. The 

following is a detailed introduction to the three areas in the template. 

The first area (See Fig. 2) presents the RAC of each testee in taking a 4-option and 20-item traditional MCT. The 

array “B4:B1003” is about the order of the testees, with most of them concealed for users’ convenience of viewing. The 
array “C4:V1003” presents all the values of answers which are randomly and automatically given by the computer. The 

values of RAC scores are listed for each testee in the array “W4:W1003”, and the values of G in the array “Z4:Z1003”. 

Row 3 is highlighted in red as the keys. The Microsoft Excel functions used in the first area are listed in detail in Table 

II. 
 

 
Figure 2.   The RAC of each testee in taking a 4-option and 20-item traditional MCT (quantified in the first area). 
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TABLE II. 

THE MICROSOFT EXCEL FUNCTIONS USED IN THE FIRST AREA 

Arrays Functions 
Examples 

Cell Formula Number format 

C4:V1003 CHOOSE; RANDBETWEEN C4 =CHOOSE(RANDBETWEEN(1,4),"A","B","C","D") Text 

W4:W1003 SUMPRODUCT W4 =SUMPRODUCT(N(C4:V4=$C$3:$V$3)) General 

Z4:Z1003 DIVISION X4 =W4/20 Percentage 

 

The second area (See Fig. 3) is designed to automatically calculate the G values of all the testees in taking the test. To 
get a clearer look at the whole data, the 1000 testees are divided into 10 groups. As shown in Fig. 2, the data of the first 

100 testees are located in the array “B4:Z103”, the second in “B104:Z203”, the third in “B204:Z303”, and so on. In Fig. 

3, the 10 groups follow the order from B1008 to B1017. Values in the array “C1008:C1017” are the maximum RAC 

scores in each group, and “D1008:D1017” the minimum. In the array “E1008:Y1017” are the numbers of testees with 

different RAC scores ranging from 0 to 20. In the array “Z1008:AD1017” are the numbers of testees in different ranges 

of RAC scores. In the array “AE1008:AE1017” are the sums of RAC scores for each group. The array 

“AF1008:AF1017” deals with the average G values in each group. In Row 1018 are all the average values of different 

arrays for the 10 groups. The Microsoft Excel functions used in the second area are listed in detail in Table III. 
 

 
Figure 3.   The average RAC probability of all the testees in taking a 4-option and 20-item traditional MCT (quantified in the second area). 

 

TABLE III. 

THE MICROSOFT EXCEL FUNCTIONS USED IN THE SECOND AREA 

Arrays Functions 
Examples 

Cell Formula Number format 

C1008:C1017 MAX C1008 =MAX(W4:W103) General 

D1008:D1017 MIN D1008 =MIN(W4:W103) General 

E1008:Y1017 COUNTIF E1008 =COUNTIF(W4:W103,0) General 

Z1008:AD1017 SUM Z1008 =SUM(E1008:G1008) General 

AE1008:AE1017 SUM AE1008 =SUM(W4:W103) General 

AF1008:AF1017 DIVISION AF1008 =AE1008/2000 Percentage 

C1018:AF1018 AVERAGE C1018 =AVERAGE(C1008:C1017) General 

 

The third area (See Fig. 4) is designed to automatically show the average “luckiness” for each group to pass the test. 

The array “B1022:B1031” presents the order of the 10 groups of testees. The values in the array “C1022:C1031” in this 

area are the average G values, equaling those in the array of “AF1008:AF1017” in the second area. In the array 

“H1022:H1031”, 20 is a constant, representing the total scores of the test (hereafter denoted as “T”). In the array 

“K1022:K1031”, 60% is also a constant, representing the supposed percentage of passing scores out of the total scores 
(hereafter denoted as “P”). In the array “Q1022:Q1031” are the average values of M for passing the test. In the array 

“W1022:W1031” are the average values of N for passing the test. The values in the array “AA1022:AA1031” represent 

the average values of L (=N/T). In Row 1032 are all the average values of different arrays for the 10 groups. The 

Microsoft Excel functions used in the third area are listed in detail in Table IV. 
 

 
Figure 4.   The “luckiness” for passing a 4-option and 20-item traditional MCT (quantified in the third area). 
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TABLE IV. 

THE MICROSOFT EXCEL FUNCTIONS USED IN THE THIRD AREA 

Arrays Functions 
Examples 

Cell Formula Number format 

C1022:C1031 EQUATION C1022 =AF1008 Percentage 

Q1022:Q1031 

SUBSTRACTION, 

MULTIPLICATION and 

DIVISION  

Q1022 =H1022*(K1022-C1022)/(1-C1022) Number 

W1022:W1031 
SUBSTRACTION and 

MULTIPLICATION 
W1022 =H1022*K1022-Q1022 Number 

AA1022:AA1031 DIVISION AA1022 =W1022/H1022 Percentage 

C1032:AA1032 AVERAGE C1032 =AVERAGE(C1022:C1031) Number; Percentage 

 

E.  Data Analysis 

The quantification in the Microsoft Excel template introduced above is run automatically, meaning that, whenever 

the F9 button is pressed, all the variable values in the three areas will be updated immediately. It is so exciting that each 

second F9 is pressed, the corresponding data of the 1000 testees come out; that is to say, if F9 were pressed 10 times, all 
the data of 10,000 testees would come out within 10 seconds. Certainly, this template works far more efficiently and 

conveniently than in the way I used to get the results from the games played in the classroom. 

In the first area, RAC is the most important data to be collected for the whole quantification. As is shown in Fig. 5, 

the values of RAC scores in the first group of testees center around 3-8, ranging from 0 to 12. The similar data can be 

collected from other groups. Interestingly, no matter how many times I pressed F9, the highest score never touched 14 

or more, but in the games I played in the classroom, 14, 15, and even 16 really happened. 
 

 
Figure 5.   The values of RAC in the first group of testees. 

 

In the second area, the average G values of each group can be seen and understood from various perspectives.  In 

average, the maximum RAC score is 10, and the minimum one close to 1. The average numbers of 100 testees with 

different RAC scores ranging from 0 to 20 center around those in the range of RAC scores from 3-8, as is illustrated in 

Fig. 6, and roughly in Fig. 7. From the average sum of RAC scores (497.10 in Fig. 3), it is easy to get the average G 
value (24.86% in Fig. 3), which are very close to 25%, the theoretical G value.  

 

 
Figure 6.   Average numbers of 100 testees with different RAC scores. 
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Figure 7.   Average numbers of 100 testees in different ranges of RAC scores. 

 

In the third area, the first and most important thing is to calculate M.  

PTM  G)MT(                                                     (2) 
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The essential relations among G, T, P and M can be demonstrated in (2), through which M can be calculated as in (3). 

From M, it is easy to calculate N as in (4) and L in (5), which both clearly indicate the “luckiness” in passing the test. In 

this template, the automatic quantification is conducted for a 4-option and 20-item traditional MCT, the passing score of 
which is 12, 60 percent of the total scores, so T is constantly 20, P is constantly 60%, and R is approximately 25%. It 

can be seen from this area that the average M for the test is 9, which is 3 less than 12, and the average L is around 13%, 

which is more than half of R. Actually, the “luckiness” in passing the test cannot be fully demonstrated by M in this 

template, which looks like a small number because T is only 20, but L, presented as a percentage, can directly show the 

“luckiness”. The average L values come out as expected and can be objectively calculated, but the result is astonishing 

since 13% is not a small percentage. 
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F.  Discussion 

No matter how many times F9 is pressed in the template, the average L values center around 13% when P is 60%. 

The possibility of guessing at MC items means some unfairness when it comes to testing, in particular to selection 

assessment. If there are two examinees of equal (moderate) level of ability, then one of them might fail the test while 
the other passes (Kubinger, Holocher-Ertl, Reif, Hohensinn & Frebort, 2010). It is indisputable that RG in taking a 

traditional MCT does diminish the validity and reliability of the test, but how to minimize the negative effects of RG 

has been a headache ever since the practice of traditional MCTs.   

To deal with guessing effects in a fair manner, Birnbaum (1968) developed from Item Response Theory (IRT) a 3-PL 

model, which provided an item-discrimination parameter and an item-guessing parameter. Also, a lot of research has 

been done on scoring rules to solve this guessing problem. Number Right (NR) is the simplest scoring rule which just 

counts the number of correct responses. Since 1953, the Scholastic Aptitude Test (SAT) employed a formula-scoring 

rule which corrected for random guessing by penalizing incorrect responses, while being neutral regarding omitted 

items (Budescu & Bar-Hillel, 1993). Although many approaches have been proposed to reduce RG in taking traditional 

MCTs, none would be superior. 

In the Microsoft Excel template designed in this paper, L considerably reflects how much RG does in taking a 
traditional MCT. Since L equals N/T, L seemingly has to change with both N and T, but it is clear in (5) that L is only 

connected with P and G. 

Although M and N change with T, L has little to do with T. As we know, the reliability of a multiple-choice test is 

partly governed by the number of items it contains; however, longer tests are more time consuming to take, and for 

some subject areas, it can be very hard to create new test items that are sufficiently distinct from previously used items 

(Bush, 2015). Consequently, it is not the right choice to reduce RG by simply raising the number of items. The feasible 

way is to change P and G. 

The automatic quantification of G and L in the template is done on a 4-option and 20-item traditional MCT.  When P 

is 60%, L is approximately 13%. However, when P is 50%, L will be about 17%, a bit more than 13%, which exactly 

verifies what CQUniversity Pro Vice-chancellor Professor Rob Reed (Hinchliffe, 2014) said, “With a pass mark of 50 

per cent which is the standard pass mark across Australia, you can know about a third of the answer and guess about 
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two thirds at that 50 per cent level.”  More L variants in Fig. 8 are calculated as in the array “C3:F7”. For example, the 

formula of C3 is “=(1/C2)*(1-$B$3)/(1-1/C2)”, in which “1/C2” is a G value. 
 

 
Figure 8.   L changes with P and G. 

 

III.  CONCLUSION 

While it is true that the probability of obtaining a high score through guessing is small (Sax, 1989), it cannot be said 

that RG is negligible. No doubt, with the help of RG, some testees really passed one or more decisive assessments in an 

unfairly lucky way. Even so, it is unnecessary to remove traditional MC items from all testing activities, but possible to 

reduce the percentage of them at least. Now that RG has little to do with the number of items, P and G may be changed 

to keep RG under control. A successful example is the Knowledge Test for a Minnesota driver’s license. The test 

contains 40 questions in the form of traditional MC and T/F and the testee must obtain a score of 80 percent to pass. 

First, the number of items in the test is moderate, so the test doesn’t take a long time and the questions can be renewed 

on a large scale to reduce repetition. Moreover, MC and T/F are allocated appropriately to cover the knowledge and 

understanding of Minnesota traffic laws and road signs. Most important of all, 80% is a high P value, so L in the test is 

very low, or rather, RG in the test is limited to a satisfying range. 
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