The Role of Vocabulary Breadth and Depth in Reading Comprehension: A Quantitative Study of Finnish EFL Learners

Noora Harkio
Department of English, University of Turku, Finland

Päivi Pietilä
Department of English, University of Turku, Finland

Abstract—This article reports the results of a study on the relationship between second language vocabulary breadth, vocabulary depth, and reading comprehension. A special aim was to discover the role of vocabulary depth in the prediction and explanation of L2 learners’ reading comprehension. Two proficiency levels, intermediate and advanced, were compared. Vocabulary breadth was measured with the Vocabulary Size Test (Nation & Beglar, 2007), vocabulary depth with the Vocabulary Knowledge Scale (Wesche & Paribakht, 1996), and reading comprehension with a test compiled of sections from two former matriculation examination tasks. The three constructs showed strong positive correlations in both groups of subjects. However, based on the results, vocabulary breadth and depth seem to be stronger predictors of reading comprehension skills in lower levels of proficiency than on the advanced level.

Index Terms—L2 English, vocabulary breadth, vocabulary depth, reading comprehension, language learning

I. INTRODUCTION

The importance of vocabulary knowledge for reading comprehension has been established by second language acquisition (SLA) research (e.g. Nation & Coady, 1988; Laufer, 1992, 1996; Wallace, 2007). Especially the role of vocabulary breadth, i.e., the size of the learner’s vocabulary, has been found to be important in second language proficiency in general (Henriksen, 2006; Schmitt, 2010) and in reading competence in particular (Laufer, 1992, 1996; Laufer & Ravenhorst-Kavlovski, 2010). The other dimension of vocabulary knowledge, i.e. depth, or quality, has not been as thoroughly researched, although its overall role in second language vocabulary competence has been acknowledged (e.g., Meara, 1996; Read, 2000). The objective of the study reported in this article was to examine the relationship between the breadth and depth of vocabulary knowledge of Finnish learners of English, representing intermediate and advanced proficiency levels. Additionally, acknowledging the well-established connection between vocabulary size and reading comprehension ability, another aim of the study was to see whether assessing vocabulary depth could add a viable dimension in predicting and explaining reading comprehension proficiency. In the following, the study will first be situated in the relevant framework of earlier research.

II. VOCABULARY BREADTH AND DEPTH

Vocabulary breadth, or size, is usually understood to denote the number of words a language learner knows. Depth of vocabulary knowledge, on the other hand, commonly refers to how well these words are known. However, the terms are far from straightforward. There is no general consensus of what is meant by knowing a word or how depth of vocabulary knowledge can be defined. Following Nation’s (2001) tripartite division of word knowledge into form, meaning, and use, Li and Kirby (2015, p. 612) suggest that breadth of vocabulary could be seen as “knowing the oral and written forms of the words, the surface meanings, and basic uses of the words.” Other researchers emphasize the importance of knowing the meaning of the word. Qian (1999, 2002), for example, regards vocabulary size as the number of words for which the learner has at least some superficial knowledge of meaning.

Defining depth of vocabulary knowledge seems to be an even more complex task. Indeed, there are at least two rather different approaches to conceptualising depth of vocabulary knowledge: the developmental approach and the dimensions (or components) approach (Read, 2000; Schmitt, 2010). According to the developmental approach, depth of vocabulary knowledge grows incrementally, from not knowing a word at all, through recognition and having a vague idea of its meaning, to mastering the word, whereas according to the dimensions approach, knowledge of a word is seen as consisting of different subcomponents, or different types of word knowledge, such as orthographic, phonological, morphological, semantic, syntactic, collocational, and pragmatic features (Read, 2004; Schmitt, 2010). Understandably, it is impossible to design tests which would measure all of these features. Some attempts have been made, nevertheless, to include several aspects of vocabulary knowledge in test formats, as reported by Read (2000). The approach adopted in
the present study is the developmental one, i.e. depth of vocabulary knowledge is understood as a sequence of develop-
ing stages of word knowledge. Consequently, the test employed to measure the study subjects’ vocabulary depth was
the Vocabulary Knowledge Scale (VKS), developed by Wesche and Paribakht (1996), as explained in the section on
Methods and Procedures.

Vocabulary breadth and vocabulary depth have both received considerable attention from researchers, but there is
some controversy about these two constructs. In addition to the multifaceted nature of the depth of vocabulary
knowledge and the consequent difficulty in measuring it, the mutual relationship of breadth and depth remains a conten-
tious issue. They are certainly related to each other, as high correlations have been found between them (e.g. Qian, 1999,
2002; Nurweni & Read, 1999, especially for high proficiency students). According to Li and Kirby (2015), breadth and
depth could be seen as two dimensions of the same phenomenon which are interconnected and influence each other.
The same idea has been expressed by other scholars as well: a beginning learner recognizes words and learns their basic
meanings. With growing experience, more and more words are known, and their characteristics, use, and associations
with other words become more familiar. As Li and Kirby (2015, p. 613) put it, “depth contributes to breadth and vice
versa.”

III. VOCABULARY KNOWLEDGE AND READING COMPREHENSION

A. Text Coverage and Other Issues

Despite the central role of vocabulary in all four L2 skills (reading, writing, listening, and speaking), there are some
differences between the written and spoken modes. It has been suggested that more knowledge of words is required for
writing and reading than for speaking and listening (e.g. Nation, 2001; Nation, 2006; Schmitt, 2008). Furthermore, it has
been proposed that poor L2 reading performance might result from poor L1 reading skills, but available reading
research strongly suggests that L2 reading is more of a language problem than an actual reading problem (Alderson et
al., 2015). Especially vocabulary knowledge is vital in reading comprehension, and this has been supported by many
studies (e.g. Nation & Coady, 1988; Laufer, 1992). Vocabulary knowledge is actually understood to be the most obvi-
ously perceivable component of the reading skill (Nation & Coady, 1988). In addition, previous research undeniably
shows that the link between reading comprehension and vocabulary knowledge is stronger than the one between reading
comprehension and other subcomponents of reading, such as grammar knowledge or background knowledge (Mehrpour
& Rahimi, 2010; Alderson et al., 2015). Laufer (1996) states that lexical problems undeniably hinder reading compre-
hension and that the threshold for successful reading is primarily related to vocabulary knowledge. In the case of EFL in
particular, vocabulary size strongly limits the number of texts a learner can read with ease (Nation & Meara, 2002).

Many studies have examined the vocabulary size needed to understand a variety of texts. Laufer (1992) studied L2
lexical knowledge and the readers’ general academic ability and concluded that on all levels of knowledge, L2 vocabu-
lar size is more efficient in predicting L2 reading performance than the informant’s general academic ability. She sug-
gests that knowing about 3000 word families is enough to ensure a starting point for L2 reading comprehension. Corre-
spendingly, Nation and Waring (1997) propose that the lexical threshold for reading comprehension is somewhere be-
tween 3000 and 5000 word families. Many researchers, however, propose that somewhat larger vocabularies are needed
for L2 reading to be successful (e.g. Nation, 2006; Schmitt, 2008). Estimates of text coverage needed for successful L2
reading vary considerably: according to many, it is somewhere between 95 and 99% (Mehrpour & Rahimi, 2010). Text
coverage needed for reading comprehension refers to how many word families or lexical units are needed for under-
standing a text; in other words, it is the percentage of running words that a learner needs to know in order to compre-
hend a given text (Nation, 2006). A 95% text coverage would mean that approximately one word out of twenty is un-
known, and with a 98% text coverage one word out of fifty would be unknown. In recent studies, the most commonly
suggested text coverage figure is 98% (e.g. Schmitt, Jiang & Grabe, 2011). Similarly, Nation (2006) suggests that a 98%
text coverage is needed for satisfactory, unaided reading comprehension. In practice, this means that a learner is re-
quired to know between 8000 and 9000 word families. To compare, a well-educated native speaker of English is esti-
mated to have knowledge of about 20000 word families. The number of words needed for reading depends, naturally,
also on the type of text (see e.g. Nation, 2006).

As the present study is concerned with the vocabulary knowledge of Finnish learners of English, the results of some
prior studies investigating the vocabulary size of this learner group are in order. In an early study (1993), Jaatinen and
Mankkinen discovered that MA level university students of English knew about 19 500 lexemes. More recently, Pirilä
(2012) found that the vocabularies of her informants, also MA level English majors, comprised about 23 200 lexemes. It
is worth noting that both of these studies counted lexemes instead of word families, and their method of measuring the
receptive vocabulary size of their informants was a Yes/No test, built on dictionary entries. Ala-Akkala (2010) focused
on upper secondary school students, i.e. intermediate level English learners, and found their receptive vocabulary
breadth to be 3700 word families on average. Her method was also a Yes/No test. The method used in the present study
to measure vocabulary breadth had a multiple-choice format. This will also be explained in more detail in the section on
Methods and Procedures.

B. Breadth, Depth, and Reading

Studies concerning the relationship between vocabulary size, or breadth, and reading comprehension are numerous,
and the connection between the two is well established, as was seen above. The number of studies concerning both vocabulary breadth and depth as well as reading comprehension is more limited, however. High positive correlations between vocabulary breadth, depth, and reading comprehension were found by Rashidi and Khosravi (2010), whose study comprised Iranian EFL learners. A moderate correlation was found between breadth and depth of vocabulary by Li and Kirby (2015), but the relationship of these two constructs to reading comprehension showed intriguing results, as vocabulary breadth correlated more strongly with a multiple-choice task, whereas depth of vocabulary correlated more strongly with a more demanding summary task.

Qian has been one of the pioneers in acknowledging the significance of depth of vocabulary knowledge as a vital element of reading comprehension skills along with vocabulary size. In his 1999 study, high positive correlations were established between the scores obtained in the four tests used to measure vocabulary breadth, vocabulary depth (two different tests), and reading comprehension. Moreover, both vocabulary breadth and depth provided significant contributions to the prediction of reading proficiency. What is noteworthy here is that vocabulary depth indeed added 11 percentage points of explained variance in reading test scores beyond the prediction provided by vocabulary breadth alone. The study undeniably supports the significance of vocabulary depth in reading comprehension (Qian, 1999). Qian’s 2002 study lends further support to the importance of vocabulary depth as a predictor of reading comprehension, as vocabulary depth scores alone explained about 59% of the variance of the results, whereas the scores on vocabulary breadth alone explained about 54% of the same variance (Qian, 2002).

IV. THE STUDY

A. The Aim of the Study

The main purpose of the present study was to examine how vocabulary breadth, vocabulary depth, and reading comprehension relate to each other. Another aim was to discover the role of vocabulary depth in the prediction and explanation of L2 learners’ reading comprehension. The third aim of the study was to compare two groups of learners of English at different proficiency levels, intermediate and advanced, to see whether there were any differences regarding the first two research questions between the groups.

B. Subjects

The subjects of the study consisted of two groups, 39 upper secondary school students from a medium-sized town in Southern Finland (the UPSEC group) and 19 university students, majoring in English at a large university in South-West Finland (the UNI group). The majority of the subjects were female (67% in the UPSEC group and 89% in the UNI group). 88% of the participants had Finnish as their L1 (82% of the UPSEC group and 100% of the UNI group). As even those subjects who had a different L1 were all attending a school with Finnish as the primary language of instruction, and as they all reported using Finnish constantly in their everyday lives, we decided not to exclude them from the study. Some basic information about the groups of subjects is presented in Table I.

<table>
<thead>
<tr>
<th>Table I.</th>
<th>SUBJECTS OF THE STUDY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UPSEC (n = 39)</td>
</tr>
<tr>
<td>Gender</td>
<td>F: 26 M: 13</td>
</tr>
<tr>
<td>Age (mean)</td>
<td>17.3</td>
</tr>
<tr>
<td>L1</td>
<td>Finnish: 32 Other: 7</td>
</tr>
<tr>
<td>Started English at age</td>
<td>9: 30 earlier: 1 later: 8</td>
</tr>
<tr>
<td>Proficiency level</td>
<td>B1–B2</td>
</tr>
</tbody>
</table>

The background information form that the subjects were asked to fill in also included a question about possible longer stays in an English-speaking country. None of the UPSEC students reported such stays; nine UNI students did report stays of varying lengths. However, as all the subjects in the UNI group were English majors who were already at a very advanced level in their studies, the length or number of stays in an English-speaking environment was not considered a major factor in this study.

C. Methods and Procedures

The subjects’ vocabulary breadth was measured using the Vocabulary Size Test (VST), designed by Nation and Beglar (2007), and available at http://www.lextutor.ca/tests/levels/recognition/1_14k/. The VST is based on frequency levels sampled according to the occurrence of word families in the British National Corpus (BNC). It has a monolingual multiple-choice format where the learner has to circle the alternative that is closest in meaning to the item being defined. Each test item is presented in a “short, non-defining context” (Nation & Beglar, 2007: 12). Furthermore, whenever feasible, the words used in the alternatives are of higher frequency than the test item in question. An example is provided below:

STONE: He sat on a stone.
 a. hard thing
 b. kind of chair
 c. soft thing on the floor
lies. All vocabulary measures here were rounded to integers.

formants’ estimated vocabulary sizes, for each informant group

learner’s vocabulary size, the score then had to be multiplied by 100. Table II presents the central findings of the i

Test (VST), as explained above. The maximum score in the test was 100 points. In order to arrive at an estimation of a

values that vary from 0 to 1 (Muijs, 2004).

ance in the dependent variable explained by one or more independent variables, and this is expressed in R s quare (R²)

dependent variable and one or more independent variables. Multiple linear regression also reveals the amount of var i-

used

As a means of describing the variance in reading comprehension scores explained by vocabulary breadth and depth, we

results in one of the tests were so uniform that the scores actually behaved more like a categorical variable than a continu-

and between the performances of th e two study groups, the

students were not likely to be familiar with the tests from such recent years. As for the UPSEC students, it was con

extract from a novel, the second an editor’s note from

National Geographic

R

E S U LT S

correlation coefficient (r) was used. As the r e-

Spearman’s rho, was applied.

As for the words to be included in the VKS test, we chose fourteen words, one from each frequency band of th e

BNC-COCA frequency list, using the online program VocabProfile (http://www.lextutor.ca/vp/comp/): strong, equip-

ment, environment, interpretation, confident, precious, diary, exhilarating, doughnut, to amputate, infantile, rapacious,

wallflower, parsonage. The words came from texts which were randomly selected from an upper secondary school

textbook. As the words represented such a wide range of frequency levels, they were expected to reveal differences in

the informants’ depth of vocabulary knowledge.

The third test in the present study was a reading comprehension test, which was based on sections of the English test

of the Finnish matriculation examination. This examination is designed and created every year by the Finnish Matric u-

ation Examination Board. The examination is taken simultaneously every autumn and spring by Finnish upper second-

ary school students usually in their third and final year of their studies. In the English test, the reading comprehension

section most commonly consists of a number of texts that are accompanied by multiple choice questions. The tests from

previous years along with the correct answers and comments from the Matriculation Examination Board can be found

online (http://yle.fi/aihe/artikkeli/2015/12/15/yo-kokeet-englanti), but in order to use the tests for research purposes,

consent has to be acquired from the Board. We applied for a research permission in order to be able to use the reading

comprehension tests for the purposes of the present study, and the permission was granted.

We chose two reading comprehension sections, one from autumn 2012 and one from spring 2013, read carefully all

texts, questions and responses, and came up with a reading comprehension test that was comprised of three texts ac-

companied by corresponding multiple choice questions. The texts represented different fields, the first text being an

extract from a novel, the second an editor’s note from National Geographic, and the third an article from a magazine.

For each text, there were three to five multiple choice questions, each with three alternatives in English. The UNI stu-

dents were not likely to be familiar with the tests from such recent years. As for the UPSEC students, it was con

firmed by their teachers that these tests had not been used as practice material in class.

The data were analysed using IBM SPSS Statistics 23.0.0.2. In order to examine the relationships between different test results and between the performances of the two study groups, the correlation coefficient (r) was used. As the re-

sults in one of the tests were so uniform that the scores actually behaved more like a categorical variable than a continu-

ous one, and, in addition, the scores were not normally distributed, a non-parametric test, Spearman’s rho, was applied.

As a means of describing the variance in reading comprehension scores explained by vocabulary breadth and depth, we

used multiple linear regression. This method of analysis makes it possible to examine the relationship between one

dependent variable and one or more independent variables. Multiple linear regression also reveals the amount of vari-

ance in the dependent variable explained by one or more independent variables, and this is expressed in R square (R²) values that vary from 0 to 1 (Muijs, 2004).

V. RESULTS

The breadth of vocabulary knowledge (or vocabulary size) of the subjects was measured with the Vocabulary Size

Test (VST), as explained above. The maximum score in the test was 100 points. In order to arrive at an estimation of a

learner’s vocabulary size, the score then had to be multiplied by 100. Table II presents the central findings of the in-

formants’ estimated vocabulary sizes, for each informant group separately and also as a total, calculated in word fami-

lies. All vocabulary measures here were rounded to integers.
As can be seen in Table II, the UNI group performed better in the VST than the UPSEC group. The mean vocabulary size of the UNI informants was 8816 words, whereas that of the UPSEC group was 5715. A Mann-Whitney U-test was conducted in order to verify the statistical significance of the difference in the results of the two study groups (U = 23.0, p < 0.01).

The informants’ depth of vocabulary knowledge was assessed with the Vocabulary Knowledge Scale (VKS). The maximum score for this test was 70 points. The results of the two groups are shown in Table III. The measures were again rounded to integers, except for standard deviation, which is presented to one decimal place.

In the VKS test, the mean score for the UPSEC group was 36 points out of 70. The least successful participant scored 16 points, whereas the most successful UPSEC student scored 58 points. Similarly to the scores in the VST, the most successful participants in the UPSEC group were close to the mean score of the more advanced UNI group. Again, the standard deviation of the UPSEC group’s scores was large: 11.3. In the UNI group, on the other hand, the differences between the participants were less dramatic. The mean score was 60 points and the standard deviation only 3.5. In this group, the least successful informant scored 52 points, compared to the most successful informant’s 66 points. A Mann-Whitney U-test indicated that the difference in the means between the two groups was statistically significant (U = 11.5, p < 0.01).

The reading comprehension test used in this study comprised of three different texts accompanied by multiple-choice questions. The maximum score in this section was 12 points. The most central findings of this test can be seen in Table IV. Again, the measures were rounded to integers for clarity (except for standard deviation that was rounded to one decimal place).

In the UPSEC group, the differences between the learners were again noteworthy. The least successful informant did not manage to provide any correct answers to the multiple-choice questions, whereas the most successful UPSEC student scored 11 out of 12 points. Similarly to the scores in the other two tests reported above, the differences between the participants’ results in the UNI group were less notable. In this group, the lowest score was 9 points and the highest 12 points. The standard deviation was 1.1. The mean score of the informants in the UNI group was 11 points. As with the other two test results presented above, a Mann-Whitney U-test was conducted, and the difference in the means of the UPSEC and UNI groups was statistically significant (U = 40.0, p < 0.01).

To examine the correlations between the test results, the Spearman’s rho was used. Table V shows the UPSEC group’s correlations between the results of the three tests.

As Table V indicates, the correlations in the UPSEC group were rather high and positive across all test results. Vocabulary size and the scores on the VKS correlated very strongly and positively (r = 0.89, n = 39, p < 0.001). Vocabulary size also correlated strongly with the reading comprehension test results (r = 0.65, n = 39, p < 0.001). The correlation between the scores on the VKS and on the reading comprehension test was also strong (r = 0.59, n = 39, p < 0.001).

In the UNI group, on the other hand, the correlations were not as high as in the UPSEC group (see Table VI).
Similarly to the UPSEC group, vocabulary size and the scores on the VKS did correlate strongly ($r = 0.72, n = 19, p = 0.001$) in the UNI group as well, but the other two correlations were clearly weaker. There was a moderate positive correlation between vocabulary size and reading comprehension scores ($r = 0.31, n = 19, p = 0.205$). A modest positive correlation was also found between the scores on the VKS and the reading comprehension test ($r = 0.29, n = 19, p = 0.224$). As can be seen from the p-values, the correlations between vocabulary size and reading comprehension, as well as between vocabulary depth and reading comprehension scores were not statistically significant ($p>0.05$).

In Table VII below, the correlations for both groups together are presented. The correlations were strong and positive across all variables. A very strong, positive correlation was found between vocabulary breadth (VST) and vocabulary depth (VKS) ($r = 0.95, n = 58, p<0.001$). Vocabulary size was also very strongly and positively related to the scores in the reading comprehension test ($r = 0.83, n = 58, p<0.001$). Another very strong, positive correlation was found between the scores on the VKS and the reading comprehension test ($r = 0.95, n = 58, p<0.001$).

<table>
<thead>
<tr>
<th>VST (Vocabulary breadth)</th>
<th>VKS (Vocabulary depth)</th>
<th>RC (Reading comprehension)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VST</td>
<td>0.72</td>
<td>0.31</td>
</tr>
<tr>
<td>VKS</td>
<td>0.72</td>
<td>0.29</td>
</tr>
<tr>
<td>RC</td>
<td>0.31</td>
<td>0.29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VST (Vocabulary breadth)</th>
<th>VKS (Vocabulary depth)</th>
<th>RC (Reading comprehension)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VST</td>
<td>0.95</td>
<td>0.83</td>
</tr>
<tr>
<td>VKS</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>RC</td>
<td>0.83</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Based on the above findings, the differences between the results of the two study groups are evident. These differences will be further scrutinized in the Discussion.

One of the aims of the present study was to examine the role of vocabulary depth in reading comprehension. More precisely, we wanted to see whether depth of vocabulary knowledge would bring something more into the prediction and explanation of reading comprehension skills, in addition to the information afforded by vocabulary breadth alone. Multiple linear regression was chosen in order to answer this research question. In spite of some problems connected with this method, the use of multiple linear regression has been encouraged by existing research (e.g. Qian, 1999, 2002; Qian & Schedl, 2004; Rashidi & Khosravi, 2010), even with independent variables that correlate with each other, as is the case in the present study. Contrary to these studies, however, we decided to report adjusted R^2 values instead of mere R^2 values. R^2 refers to the amount of variance in a dependent variable (in this case, reading comprehension) that is explained by independent variables (vocabulary breadth and depth). An adjusted R^2 is a correction to R^2 that “takes into account that we are looking at a sample rather than at the population” (Muijs, 2004, p. 165). Table VIII shows the results of the regression analysis of the UPSEC group.

<table>
<thead>
<tr>
<th>Step</th>
<th>Variable</th>
<th>Adjusted R^2</th>
<th>R^2 change</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vocabulary size</td>
<td>0.38</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Scores on the VKS</td>
<td>0.39</td>
<td>0.01</td>
<td><0.001</td>
</tr>
</tbody>
</table>

As summarized in Table VIII, for the UPSEC group, vocabulary size alone explained about 38% of the variance in reading comprehension scores (adjusted $R^2 = 0.38, F(1, 37) = 24.68, p<0.001$). When looking at the explanation afforded by vocabulary size and the scores on the VKS together, the percentage was 39% (adjusted $R^2 = 0.39, F(2, 36) = 12.88, p<0.001$). Adjusted R^2 change was 0.01, which suggests that vocabulary depth added 1 percentage point of explained variance in reading comprehension scores. When looking at the explained variance provided by vocabulary depth alone, the percentage was about 38% (adjusted $R^2 = 0.38, F(1, 37) = 23.77, p<0.001$).

The multiple regression analysis results in the UNI group were rather different from the UPSEC group. Vocabulary size explained only about 19% of the variance in reading comprehension test scores (adjusted $R^2 = 0.19, F (1, 17) = 5.32, p<0.05$). Furthermore, when scores on the VKS were added to the equation, it looks as if the two independent variables together are not very good at predicting or explaining reading comprehension test scores: the percentage was only 15% (adjusted $R^2 = 0.15, F(2, 16) = 2.62, p>0.05$). The predictive power of vocabulary depth alone was less than one percent (adjusted $R^2 = 0.03, F(1, 17) = 1.06, p<0.05$). As can be seen in the p-values reported, only the variance explained by vocabulary size alone is statistically significant. The results seem to suggest, firstly, that neither vocabulary size nor vocabulary depth are very good at predicting or explaining reading comprehension proficiency of the UNI group, and secondly, that scores on the VKS do not actually add anything into the prediction of reading comprehension in this group. A summary of the findings is presented in Table IX.
Lastly, we looked at the two groups together to see what the effects of vocabulary size and vocabulary depth were in reading comprehension in general. Vocabulary size alone explained about 64% of the variance in reading comprehension test results (adjusted $R^2 = 0.64$, $F (1, 56) = 102.17$, $p<0.001$). When both vocabulary size and depth of vocabulary knowledge scores were added to the equation, they together explained about 66% of the variance in reading comprehension (adjusted $R^2 = 0.66$, $F(2, 55) = 55.07$, $p<0.001$). A modest addition, about 2 percentage points, was afforded by scores on the VKS. When looking at the percentage of explained variance in reading comprehension afforded by vocabulary depth alone, the figure was 64% (adjusted $R^2 = 0.64$, $F (1, 56) = 103.95$, $p<0.001$). Table X below sums up the findings.

As with the correlation coefficients reported earlier, the differences found between the two study groups are again obvious. The findings, and possible explanations for them, will be further discussed in the following chapter.

VI. DISCUSSION

The primary objective of the study at hand was to investigate how L2 vocabulary breadth, vocabulary depth, and reading comprehension relate to one another, specifically focusing on the role of depth of vocabulary knowledge in predicting and explaining reading comprehension skills. A further goal was to discover whether the results would be different in two proficiency groups, intermediate and advanced.

The receptive vocabulary size of the group of upper secondary school students (UPSEC) in the present study was 5715 word families on average. As mentioned earlier, Ala-Akkala (2010) also studied Finnish upper secondary school students and found that their average English vocabulary size was 3700 word families. The method used in her study was a Yes/No test, so it is not directly comparable to the present study, as the difference in testing methods may well have influenced the results. However, the results of both studies seem to suggest that the differences between individual upper secondary school students are large.

As for the group of university students (UNI), on average, a major student of English knew 8816 word families. However, it is noteworthy to remember that the version of the VST used in the present study only tested the knowledge of the 10 000 most frequent word families of English. In order to tap the whole scope of the learners’ vocabulary breadth, another test involving further frequency levels as well ought to be used. It is likely that the results obtained would have been somewhat higher had the test included words from the lowest frequency levels as well.

A major difference between earlier Finnish studies on learners’ vocabulary sizes and the present study lies in the test format. As pointed out before, the Yes/No and the multiple choice test formats are quite different. The Yes/No test format does not require the informant to actually show any knowledge of word meaning; the method is more like self-assessing one’s knowledge. In the multiple-choice format, which was applied in the present study, however, the informant is required to demonstrate his or her knowledge. On the other hand, the multiple-choice format mostly requires the informant to know one particular meaning of the test item in question, whereas in the Yes/No format, the informant can report any meaning out of all the meanings of a particular word. Thus, it is likely that the use of multiple-choice formats results in somewhat smaller estimates of learners’ vocabulary size than the use of tests based on the Yes/No format. In addition, as mentioned earlier, with the VST applied in this study, the maximum vocabulary size that the test could report was 10000 word families. A longer test or a test compiled differently (for example, five test items instead of ten to represent one frequency level) might be useful in order to better estimate the vocabulary size of advanced learners of English. Even though the authors of the VST, Nation and Beglar (2007), accept shortening the test, they suggest, nonetheless, that the best is to strive for a test where the last frequency levels to be tested are a few levels beyond the learners’ expected vocabulary size. This may explain why the results of the UNI group differ so drastically from other studies conducted with Finnish university students of English (Jaatinen & Mankkinen, 1993; Pirilä, 2012).

Positive correlations were found between L2 vocabulary size, depth and reading comprehension. The correlations were especially high in the UPSEC group and in the two groups together. In the UNI group, on the other hand, the correlations were somewhat lower. Many researchers have pointed out that the relationship between the size and depth of vocabulary knowledge is a close one (e.g. Qian, 1999). The findings of the present study support this view. The correlation between vocabulary size and the scores on the VKS was high and positive in both groups: 0.89 in the UPSEC group, 0.72 in the UNI group, and 0.95 in the two groups together. Similar results have been reported in earlier studies as well (Rashidi & Khosravi, 2010; Li, 2015).

© 2016 ACADEMY PUBLICATION
In this study, the correlation between vocabulary size and reading comprehension was positive in both groups. The results are similar to those obtained in earlier studies (e.g. Qian, 1999, 2002; Rashidi & Khosravi, 2010; Li, 2015). Vocabulary depth and reading comprehension were also positively correlated in the present study. This is also in line with results reported in previous research. Rashidi and Khosravi (2010) reported a very strong and positive correlation between vocabulary depth and reading comprehension, whereas Li (2015) reported a slightly lower, yet positive correlation between the two variables. In both of Qian’s studies (1999, 2002), two different measures were used to assess the learners’ depth of vocabulary knowledge. Nonetheless, the correlations still resemble the ones already mentioned here, as do the results obtained in a study by Qian and Schell (2004), which also focused on the relationship between vocabulary depth and reading comprehension.

As for the second research question, the results of the present study suggest that vocabulary depth can indeed add another significant variable in the prediction and explanation of scores in a reading comprehension test. In the UPSEC group, vocabulary breadth alone explained 38% of the variance in reading comprehension. Together with vocabulary depth, the two variables explained 39% of the variance. When examining the UPSEC and UNI groups together, the corresponding figures were 64% and 66%, respectively. These results suggest that vocabulary depth added 1 percentage point and 2 percentage points of explained variance in reading comprehension scores when considering the UPSEC group and the UPSEC and UNI groups together. Similarly to the figures of variance explained by vocabulary size alone, vocabulary depth alone could explain 38% and 64% of variance in reading comprehension scores in the UPSEC group and in the two groups in total, respectively. It seems that vocabulary depth does not add much to the explanation and prediction of L2 reading, in addition to that afforded by vocabulary size alone. Nevertheless, the results suggest that both vocabulary size and depth could be used separately as equivalent predictors of reading proficiency. However, when looking at the results of the UNI group, the results were somewhat different. In the UNI group, vocabulary size alone explained 19% of the variance in reading comprehension. Together with vocabulary depth, the two variables explained only 15% of the variance. Within the scope of the present study, the numbers suggest that vocabulary depth does not necessarily provide any additional information which would not be provided by vocabulary size alone, in the prediction of reading comprehension skills of the highly advanced UNI group. Moreover, when looking at the predictive and explanatory power of vocabulary depth alone, it could only explain less than one percent of the variance in reading comprehension test scores.

In their study, Rashidi and Khosravi (2010) only looked at the separate contributions afforded by vocabulary breadth and depth in reading comprehension. According to them, vocabulary size accounted for 55% and vocabulary depth for 69% of the variance in reading comprehension test scores. The results are rather similar to those obtained in the present study where vocabulary size alone explained 64%, and, similarly, vocabulary depth alone explained 64% of variance in reading comprehension test results, when looking at the two groups of informants in total. In Qian and Schell’s (2004) study, only vocabulary depth and reading comprehension were involved. The scores of their vocabulary depth test explained 55% of the variance in reading comprehension test scores.

In Qian’s 1999 study, vocabulary size alone explained 60% of the variance in reading comprehension scores. Together with vocabulary depth, the two variables could explain 71% of the variance. This suggests that vocabulary depth added significant 11 percentage points of explained variance in reading comprehension test results.

When examining the results of earlier studies and the present study, it seems that measuring vocabulary depth can indeed serve as a tool for predicting and explaining reading comprehension test scores. Both vocabulary size and depth alone were able to explain a considerable and similar amount of variance in reading comprehension test scores. However, the percentage of added explained variance provided by vocabulary depth (in addition to vocabulary size alone) was not very high, and, in the present study, it was indeed lower than in previous studies (Qian, 1999, 2002). It might be that the test format played a role here because the VKS used in the present study is fundamentally different from the tests used in the majority of earlier research to measure vocabulary depth (as mentioned earlier, the VKS reflects the developmental approach to vocabulary depth, whereas most other tests are based on the dimensional view). Nevertheless, the results of the present study suggest that measuring vocabulary depth as a means of predicting or explaining reading comprehension test scores is quite as efficient as measuring vocabulary size.

As reported and discussed already, the UNI group performed better than the UPSEC group in all three tests. This is not a surprising finding, considering that the two groups were of different competence levels, the UPSEC group consisting of intermediate-level language learners and the UNI group of advanced learners. Moreover, the differences within the two groups varied considerably. The more advanced UNI group was clearly quite homogeneous, whereas the differences within the less advanced UPSEC group were large. It has to be acknowledged, of course, that the UNI group was somewhat smaller than the UPSEC group, which may also have affected the results.

When it comes to the correlations found between the three variables (vocabulary size, vocabulary depth, and reading comprehension), they were stronger in the UPSEC group than in the more advanced UNI group. This seems to suggest that the informants in the UNI group performed well in the reading comprehension test despite the lower correlations between vocabulary size and reading comprehension, as well as between vocabulary depth and reading comprehension. Considering their very high competence of English and their level of studies, it is likely that they were able to use more effective reading strategies, for example. In addition, the tests conducted may simply have been at least partly too easy for the UNI group. The significant finding here is that the results suggest that vocabulary knowledge, understood both
as vocabulary size and vocabulary depth, plays a fundamental role in reading comprehension proficiency of learners who are not very advanced, but the role of vocabulary knowledge seems to decrease with increasing L2 proficiency.

VII. CONCLUSION

Vocabulary knowledge has a central role in L2 learning in general and in reading comprehension specifically. The results of this study strongly suggest that vocabulary breadth, depth and reading comprehension are profoundly connected with each other, as has, indeed, been suggested by many previous research findings. This is especially interesting from the viewpoint of Finnish EFL learners. Finnish is not a cognate of English, nor of any of the languages that were any of the informants’ L1 mentioned in the previous studies of the field (e.g. Qian, 1999, 2002; Qian & Schedl, 2004; Rashidi & Khosravi, 2010; Li, 2015). The results of the present study, as well as the earlier ones, support the view that L2 reading is fundamentally a language problem, which cannot be explained only by the learner’s L1 or L1-related skills, and L2 vocabulary knowledge strongly affects reading comprehension.

The results of the present study suggest that both vocabulary breadth and depth can be used as predictors of reading comprehension proficiency, as they seem to provide a similar factor in the explanation of reading comprehension test scores. However, caution has to be applied when considering advanced learners. It seems that at the more advanced proficiency levels, the learners will succeed in reading comprehension despite their vocabulary knowledge. It is likely that advanced learners have a wide range of other skills, such as the use of other linguistic knowledge or reading strategies, which they can resort to when encountering problems in reading. At the beginning and developing stages of competence, on the other hand, both vocabulary size and depth are good predictive and explanatory factors of reading comprehension.

ACKNOWLEDGEMENT

The authors wish to thank the anonymous reviewers for their observant and insightful comments.

REFERENCES

Purposes 18.2, 161-175.

ment perspective. Language Learning 52.3, 513–536.

[27] Rashidi, N. & N. Khosravi. (2010). Assessing the role of depth and breadth of vocabulary knowledge in reading comprehension

363.

Language Journal 95, 26–43.

Noora Harkio is a teacher of English, French and Swedish. Her MA degree, with English as her major subject, is from the Univer-
sity of Turku (2016). She has formerly worked at Sesvetska Sopnica Elementary School in Zagreb, Croatia, and, as of August
2016, will start teaching English and Swedish in an upper secondary school in the capital area of Finland. Her research interests
include second language learning, L2 vocabulary acquisition as well as specific learning differences in SLA.

Päivi Pietilä is Professor of English at the University of Turku, Finland, where she is responsible for the SLA section of her de-
partment. Her publications include The English of Finnish Americans (1989), L2 Speech (1999), Lexical Issues in L2 Writing (2015,
co-editor), in addition to a number of journal articles. Her research interests include second language acquisition and attrition, vocab-
ulary acquisition and use, L2 academic writing, L2 speaking skills, and the lexis-grammar interface.